Role of cellular effectors in the emergence of ventilation defects during allergic bronchoconstriction.
نویسندگان
چکیده
It is not known whether local factors within the airway wall or parenchyma may influence the emergence and spatial distribution of ventilation defects (VDs), thereby modulating the dynamic system behavior of the lung during bronchoconstriction. We assessed the relationship between the distribution of cellular effectors and the emergence of defects in regional ventilation distribution following allergen challenge. We performed high-resolution K-edge subtraction (KES) synchrotron imaging during xenon inhalation and measured the forced oscillatory input impedance in ovalbumin (OVA)-sensitized Brown-Norway rats (n = 12) at baseline and repeatedly following OVA challenge. Histological slices with best anatomic matching to the computed tomographic images were stained with a modified May-Grunwald Giemsa and immunohistochemical staining with monoclonal anti-rat CD68, in six rats. Slides were digitized and total cells and eosinophils were counted in the walls of bronchi and vessels randomly selected within and outside of VDs on the basis of xenon-KES images. Ventilated alveolar area decreased and ventilation heterogeneity, Newtonian resistance, tissue damping, and elastance increased following OVA challenge. Eosinophil, total cell, and CD68+ counts were significantly higher in the bronchial and vascular walls within vs. outside of the VDs. The minimal central airway diameters during OVA-induced bronchoconstriction were correlated with eosinophil (R = -0.85; P = 0.031) and total cell densities (R = -0.82; P = 0.046) in the airway walls within the poorly ventilated zones. Our findings suggest that allergic airway inflammation is locally heterogeneous and is topographically associated with the local emergence of VDs following allergen challenge.
منابع مشابه
Deep Inspiration and the Emergence of Ventilation Defects during Bronchoconstriction: A Computational Study
Deep inspirations (DIs) have a dilatory effect on airway smooth muscle (ASM) that helps to prevent or reduce more severe bronchoconstriction in healthy individuals. However, this bronchodilation appears to fail in some asthmatic patients or under certain conditions, and the reason is unclear. Additionally, quantitative effects of the frequency and magnitude of DIs on bronchodilation are not wel...
متن کاملThe prone position results in smaller ventilation defects during bronchoconstriction in asthma.
The effect of body posture on regional ventilation during bronchoconstriction is unknown. In five subjects with asthma, we measured spirometry, low-frequency (0.15-Hz) lung elastance, and resistance and regional ventilation by intravenous (13)NN-saline positron emission tomography before and after nebulized methacholine. The subjects were imaged prone on 1 day and supine on another, but on both...
متن کاملRelationship between airway narrowing, patchy ventilation and lung mechanics in asthmatics.
Bronchoconstriction in asthma results in patchy ventilation forming ventilation defects (VDefs). Patchy ventilation is clinically important because it affects obstructive symptoms and impairs both gas exchange and the distribution of inhaled medications. The current study combined functional imaging, oscillatory mechanics and theoretical modelling to test whether the degrees of constriction of ...
متن کاملUsing Free-breathing Proton Ventilation MRI to Evaluate Treatment Response in Asthma
Purpose: Hyperpolarized noble gas magnetic resonance imaging (MRI) provides a way to map both functional and structural pulmonary information. Specifically in asthmatics, inhaled hyperpolarized gas MRI has been used to evaluate bronchoconstriction (methacholine-challenge [MCh]) and bronchodilation (salbutamol), showing ventilation defects that respond to MCh and salbutamol [1]. Fourier decompos...
متن کاملCharacterization of adenosine receptor(s) involved in adenosine-induced bronchoconstriction in an allergic mouse model.
We recently reported that adenosine caused bronchoconstriction and enhanced airway inflammation in an allergic mouse model. In this study, we further report the characterization of the subtype of adenosine receptor(s) involved in bronchoconstriction. 5'-(N-ethylcarboxamido)adenosine (NECA), a nonselective adenosine agonist, elicited bronchoconstriction in a dose-dependent manner. Little effects...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 115 7 شماره
صفحات -
تاریخ انتشار 2013